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Abstract A new method, REcombination Counting
and ORDering (RECORD) is presented for the
ordering of loci on genetic linkage maps. The method
minimizes the total number of recombination events.
The search algorithm is a heuristic procedure, com-
bining elements of branch-and-bound with local re-
shuffling. Since the criterion we propose does not
require intensive calculations, the algorithm rapidly
produces an optimal ordering as well as a series of
near-optimal ones. The latter provides insight into the
local certainty of ordering along the map. A simula-
tion study was performed to compare the performance
of RECORD and JoinMap. RECORD is much faster
and less sensitive to missing observations and scoring
errors, since the optimisation criterion is less depen-
dent on the position of the erroneous markers. In
particular, RECORD performs better in regions of the
map with high marker density. The implications of
high marker densities on linkage map construction are
discussed.

Introduction

Genetic linkage maps have become an indispensable tool
for locating genes or quantitative trait loci (QTL),
marker assisted breeding, and map-based gene cloning.
The first linkage maps were based on few loci of mor-
phological characteristics, like the classical Drosophila

linkage map of chromosome X (Sturtevant 1913).
Sturtevant introduced the concept that the frequency of
crossing-over between two genes provides an index of
their distance on a linear genetic map. He proposed that
1% of crossing-over should be taken as equal to one
map unit. He devised a crucial test of the principles of
mapping genes by constructing crosses in which at least
two or three genes were segregating simultaneously.
These two- or three-point crosses provided the principles
and methods of ordering and mapping genes. These
principles have enabled geneticists to map genes and
markers to the chromosomes of a variety of higher
organisms, including man. From this historical per-
spective it is obvious that mapping methods embark on
pair-wise distance estimates. However, when large
numbers of markers segregate in a single mapping
population, the analysis of recombination events from
marker segregation data is more rewarding. Distance
estimates of marker pairs in dense regions are blurred by
errors (Buetow 1991). The segregation data are a more
direct reflection of the data ambiguities. Now, with the
advent of molecular markers, much larger numbers of
segregating loci can be mapped within one single map-
ping population. As an intermediate between conven-
tional linkage maps and sequencing the complete
genome of an organism, high-density maps are currently
being generated (Steen et al. 1999, 4736 SSLP-markers;
Kong et al. 2002, 5136 microsatellite marker; Harushima
et al. 1998, 2275 EST markers; Isidore et al. 2003, 1260
AFLP markers). These maps sometimes comprise over
500 markers per linkage group. Since the number of
possible orders asymptotically increases exponentially
with the number of loci to be ordered, the problem of
finding the optimal or near-optimal ordering requires a
search algorithm that avoids an exhaustive search. For
example, with 100 loci in a linkage group the number of
orders equals (100!)/2=9.3·10157, which clearly pro-
hibits an exhaustive search. Another factor that may set
limits to the practical application of a search algorithm
is the complexity of the target function to be minimized
or maximized.
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The optimisation problem

Locus ordering on a linkage map requires a criterion
that defines the ‘best’ map and an algorithm to find the
optimal sequence of loci. The criteria that have been
proposed include the maximum likelihood (Lander et al.
1987; Jansen et al. 2001), the minimum sum of adjacent
recombination fractions (SARF), the maximum sum of
adjacent LOD scores (SALOD) (Liu and Knapp 1990),
the minimum number of cross-overs (Thompson 1987),
and the ‘least square locus order’ (Stam 1993).

Various computer packages for linkage mapping
have implemented these criteria, combined with a certain
search algorithm. For example, GMENDEL (Liu and
Knapp 1990) minimizes SARF using simulated anneal-
ing. The PGRI package (Lu and Liu 1995) can minimize
SARF, or maximize the likelihood, using simulated
annealing and/or branch-and-bound. JoinMap (Stam
1993) minimizes the least square locus order using a
stepwise search, which is a combination of seriation and
branch-and-bound with some additional local reshuf-
fling. For practical purposes, the target function should
not require intensive calculations, and yet be acceptable
from a statistical viewpoint. Especially with incomplete
data (missing observations and/or incomplete genotype
information, as is the case with dominance), calculation
of the complete likelihood and the least square criterion
is time consuming. As a result, the methods that use
these criteria are becoming too computing-intensive for
constructing linkage maps of over 400 loci, for instance,
on a regular basis.

In this paper, we propose a target function using the
minimal number of cross-over events as the optimisation
criterion, and a search algorithm that enables ordering of
data sets withmore than 500 loci within a reasonable time.

Materials and methods

The optimisation criterion we use is COUNT, the
number of recombination events. In a backcross (BC1)
with perfect data (no missing observations), this number
is easily obtained by counting the number of recombi-
nants per locus pair, and, for a given sequence of loci, by
adding over adjacent loci. Although COUNT and
SARF are similar, there is an essential difference:
COUNT cannot decrease as more gametes (individuals)
are added to the population (cf. Thompson 1987). Since
the likelihood, as well as COUNT and SARF are
monotonic functions of the recombination frequencies
between adjacent loci, COUNT, SARF and likelihood
will give the same optimal ordering for perfect data (see
also Jansen et al. 2001; Hackett and Broadfoot 2003).
When information is incomplete due to, for example,
missing observations or dominance in an F2 mapping
population, this counting of observable cross-overs is
replaced by a value x, which is the expected number of
crossovers for any incomplete observation of a pair of
loci. This expected number (x) in turn is based on the

maximum likelihood (ML) estimate of recombination
frequency (r) between the corresponding loci. Table 1
illustrates this calculation for the observation of the
genotype A1A1B-, being A1A1BB or A1A1Bb in an F2,
where the co-dominant allele A1 and the dominant allele
B are linked in coupling phase. For other genotypes of
incomplete information, the calculation runs along the
same lines, using the ML-estimate of recombination
frequency to calculate the conditional probabilities of
the hidden genotypes.

EðxjA1A1B-Þ ¼ 0� ð1� rÞ2

1� r2
þ 1� 2rð1� rÞ

1� r2
¼ 2r

1þ r
;

ð1Þ

where x is the expected number of cross-overs condi-
tional to the observation of genotype A1A1B- and r is the
recombination frequency.

In this way a matrix, Xij, representing the number of
recombination events between marker pairs, is con-
structed. Calculation of the criterion COUNT for a gi-
ven sequence of loci is done by a simple addition of
those numbers of recombination events over the proper
(adjacent) loci, i.e.,

COUNT ¼
Xn�1

i¼1
XseqðiÞ;seqðiþ1Þ; ð1Þ

where seq(i) is the ith element of the sequence.
The computational advantage of using COUNT is

that for any exchange of two positions or an inversion of
a window of certain size in a given sequence, the
resulting value of COUNT requires the replacement of
only a few terms of the summation in Eq. 1.

In order to prevent an unnecessary computational
overload, the population is tested for the presence of
‘duplicate markers’, that is markers with exactly the
same segregation pattern, including missing observa-
tions. Groups of markers with identical segregation
signature are placed in ‘bins’, and each bin is represented
by one of its members in the subsequent analysis. The
order of loci within a bin remains unresolved unless
additional information, not included in the ‘current’
mapping experiment, is available.

The core of the search algorithm is as follows. First,
a sequence is constructed stepwise, starting with a

Table 1 Calculation of the expected number of recombination
events (crossovers) resulting in the genotype A1A2B- in an F2 de-
rived from the cross A1A1BB · A2A2bb

Observed
genotype

Hidden
genotypes

Conditional
probability

Number of
cross-overs

A1A1B- A1A1BB
ð1�rÞ2
1�r2 0

A1A1Bb
2rð1�rÞ
1�r2 1

The probabilities of the hidden genotypes (A1A1BB and A1A1Bb)
are expressed in terms of the recombination frequency, r
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randomly chosen pair of markers, and adding one
marker at a time. For each marker to be added the best
position is determined (one out of n+1 positions if the
current sequence has n elements). This is a branch-and-
bound-like procedure. The order in which markers are
added to the sequence is random.

Once all markers have been added to the linkage
group, thus making a ‘sequence’, an additional search
for improvement is performed in the following way. A
window of a given size is moved along the sequence from
head to tail and for every position of this window, the
subsequence within the window is inverted, and the
resulting COUNT-value calculated. If the reverse order
did not offer a lower COUNT-value, the inversion was
restored. If a lower COUNT-value was obtained, sub-
sequent steps were done given the new order. This is
repeated for windows of increasing size, starting with
size two, until the window covers all but one of the loci
in the sequence. Every improvement encountered this
way is accepted. The whole procedure is repeated until
no further improvements are encountered. Notice that
the strictness of the branch-and-bound method is lifted
by the additional final search for local improvements,
with the obvious goal of avoiding getting trapped in a
local minimum. However, this reshuffling by a moving
window of increasing size does not guarantee finding the
global minimum. Indeed, experimentation with simu-
lated data sets containing missing observations has
shown that the final solution produced by this stepwise
assembling and additional search slightly depends on the
order in which markers are added to the sequence. A
solution for this input order dependency would be to
add markers by the seriation principle (Buetow and
Chakravarti 1987), i.e. at each step, add the marker that
is closest to the one at the current head or tail. In the
context of the traveling salesman problem this strategy is
also known as a ‘greedy’ one: at each step, travel to the
nearest city that has not been visited before. It is known
that this seriation strategy is not a guarantee to arrive at
the global optimum either (Thompson 1987). For that
reason, we chose to simply repeat the procedure a
number of times and select the best one from these
replicate assemblages. With good quality data, the rep-
licate solutions produced by RECORD are all identical.
Upon experimentation with simulated data, we found
that for data sets with up to 20% missing observations,
increasing the number of replicate assemblages beyond
ten is hardly rewarding. So we consider ten replicate
build-ups of the sequence as a good compromise be-
tween speed and quality of the solution obtained.

Since the producer of a linkage map is not only
interested in a single ‘best’ sequence of markers, but also
in the certainty of that sequence, we have added the
following procedure to the algorithm. Starting from the
last and optimal solution, a search is performed for
‘almost equivalent’ solutions. An ‘almost equivalent’
solution is defined as one that induces a pre-set addi-
tional number of crossovers. So, a search is done for
solutions that fall within this range of ‘admissible’ values

of COUNT. The search itself is the same as described
above: inversion of the sequence within a moving win-
dow, which is repeated for windows of increasing size.
From the set of admissible solutions obtained this way,
for each locus, its distribution of positions is recorded.
Inspection of this distribution provides a quick impres-
sion of the local certainty of the sequence. Figure 1 gives
a sample of RECORD output, listing the positions taken
by each marker in the set of ‘admissible’ sequences. It
shows that for approximately 50% of the loci in this
example the position is fixed, whereas for ‘islands’ of
clustered markers, the order within such a cluster is
indeterminate.

REcombination Counting and ORDering can deal
with the following types of mapping populations: BC1,
F2, F3, RILs (in fact any generation obtained by re-
peated selfing of a hybrid between homozygous parents).
Mapping populations from non-inbreds should be split
into BC1 or HAP data that represent the maternal and
paternal gametes, according to the two-way pseudo-
testcross method (Grattapaglia and Sederoff 1994).

The algorithm described above has been implemented
in a DOS-oriented, C++ written computer program,
which is available from our web site (http://
www.dpw.wageningen-ur.nl/pv/). We have chosen the
DOS platform since it enables running large batch jobs
which is convenient for the purpose of the remainder of
this study, a comparison of the performance of RE-
CORD and JoinMap using simulated data.

A comparison of JoinMap and RECORD

In JoinMap the stepwise assembling of a locus sequence
is essentially the same as in RECORD, i.e. a seriation-
like procedure with local reshuffling (called ‘rippling’ in
JoinMap) in a search for improvements (Stam 1993;
Stam and Van Ooijen 1995). The search method of
RECORD requires (1/2)n(n�1) evaluations of the target
function for a sequence of length n. In JoinMap a similar
number is required. However, evaluation of the Join-
Map target function involves the inversion of an n · n
matrix for each sequence of size n+1. So, asymptotically
the number of operations in RECORD increases as n2,
whereas in JoinMap this increase is approximately by n4.
Moreover, calculation of COUNT, going from a given
sequence to one with an inverted segment, requires the
replacement of only a few terms in the summation of Eq.
1. This makes the RECORD algorithm extremely fast.

Three different experiments were performed. The first
experiment was done to test whether or not the new
method of minimizing recombination events imple-
mented in RECORD can produce maps of the same
quality as the approach based on pair-wise marker dis-
tances implemented in JoinMap. Both RECORD and
JoinMap were tested under a number of varying con-
ditions such as population size, missing observations,
and error rate. In the second experiment, the two pro-
grams were tested for their error-sensitivity under
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different marker densities. In the third experiment, the
speed of the software was evaluated.

Simulated data

We simulated first generation BC1 populations. The
simulated data were produced as follows. A given
number of loci were randomly positioned (according to
a Poisson process) along a single chromosome of spec-
ified length in cM. Centimorgen values are given as if
calculated from an infinite amount of genotypes.
Genotypes were generated for a BC1 progeny following
standard Mendelian segregation. Furthermore, we as-
sumed no crossover interference. The number of cross-
over events solely depends on the distance as specified by
the simulated positions of the loci on the map. Scoring
results were generated by assuming that missing obser-
vations and errors were independently and randomly
distributed. (Note: Throughout this paper, we imply that
genotyping errors comprise human errors in the lab,
scoring errors, typing errors, as well as reproducible

though conflicting data points, resulting from biological
phenomena such as gene conversion.)

In Experiment I, 150 independent maps of 50 loci
spread along 50 cM were simulated. Next to speed,
error-sensitivity is one of the most important factors
while coping with high-density data sets. In this study,
emphasis is placed on both error-sensitivity and speed.
From each map, four populations were simulated con-
sisting of 25, 50, 100, and 250 individuals. In all popu-
lation, data noise was introduced by either 5, 10, 15, 20,
and 30% errors or missing observations.

Experiment II was based on two data sets of different
marker density. One data set was simulated from a map
with 100 loci on a 10 cM map, and the other from 100
loci on a 100 cM map. Both data sets consisted of 100
individuals and 3% scoring errors.

Experiment III was set up to assess the calculation
speed of the two algorithms. Data sets were varied in the
number of loci (50, 100, 150, and 200 loci) and popu-
lation size (25, 50, 100, and 250). All data sets contained
5% scoring errors, because perfect data do not provide a
realistic impression of the mapping time in practice. The

000000000011111111112222222222
012345678901234567890123456789

0 g3715 | 00
1 w121 | 0000
2 m217 | 0000
3 g3837 | 00
4 w174 | 00
5 CHS | 00
6 w322 | 0
7 g4560 | 0
8 w138 | 000
9 w433 | 000

10 m291 | 000
11 g4715-b | 0
12 w219 | 0
13 w125 | 0
14 w291b | 0
15 w137 | 0
16 w323 | 0
17 m247 |
18 g4028 |
19 w194 |
20 w423b | 0
21 w61 | 0
22 w271 | 0
23 w2 | 0
24 m435 | 0

0

25 w184 | 0

0
0

26 w69 | 000
27 g2368 |
28 m555 | 0
29 w335 | 0

0
0
0

0

0
0

0

Fig. 1 Sample output of
RECORD showing the rank
numbers taken by markers in a
series of near-optimal solutions.
The vertical numbers (1–29)
represents the expected rank
number of the loci (indicated by
their marker name g3715.
w335), and the horizontal
numbers (1–29) are the observed
rank numbers of the loci as
obtained with RECORD. The
diagonal of ‘‘0’’ signs indicate
the correlation between
expected and observed rank
numbers. Multiple ‘‘0’’ signs, as
shown at positions 8–10,
indicate that alternative
ordering of the marker loci
w138, w433, and m291 have
equal or near equal likelihood.
Data taken from the
Arabidopsis genome database
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different settings for the simulations in the three experi-
ments are summarized in Table 2.

A yardstick for performance

As a measure for the performance of both algorithms, we
examined two different correlation coefficients bet-
ween marker positions of the calculated sequence, and
the true order in the map that was used to generate the
data. Since we are not dealing with map positions in
centimorgans, but rather with rank numbers, the first
correlation coefficient is Spearman’s rank correlation (rs).
The second correlation coefficient is Kendall’s s coefficient.

In order to see to what extent local rearrangements of
a given sequence of rank numbers affects the correlation
coefficients, we derived the following equations for local
inversion of a segment. Inverting a window of size k in a
sequence of length n leads to

rs ¼ 1� 2
kðk2 � 1Þ
nðn2 � 1Þ and s ¼ 1� 2

kðk � 1Þ
nðn� 1Þ :

Taking k as a fraction of n and writing k/n=p, one
obtains, as n tends to infinity:

rsðpÞ ¼ 1� 2p3 and sðpÞ ¼ 1� 2p2: ð2Þ

Figure 2 presents a graph of these relations. It shows
that upon inverting 50% (P=0.5) of a long sequence, rs
is still 0.75, whereas s is 0.50. Clearly, Kendall’s s is a
more sensitive correlation coefficient than Spearman’s rs.
Small inversions, of less than 5% of the total length,

have a negligible effect on the correlation coefficients.
Multiple inversions will, of course, have larger impact.
For m non-overlapping inversions covering a proportion
pi of the sequence, rs and s become

rs ¼ 1�
Xm

i¼1
2p3i ; s ¼ 1�

Xm

i¼1
2p2i

X
pi � 1

� �
:

We conclude that for rs to drop below 0.8, or for s to
drop below 0.6, for instance, a very serious distortion of
the sequence is required. In fact, such a distortion would
be unacceptable in a real mapping experiment. To cor-
rect possible (almost) complete map inversions, the
absolute value of rs and s was taken for further calcu-
lations.

For testing purposes, rather general program settings
were chosen for JoinMap. This means that all pair-wise
data were used with a LOD score higher than 1.0 and an
estimated recombination fraction smaller than 0.45.
Before actual mapping starts, JoinMap calculates the
likelihood of the three possible orders of every triplet.
When one of these exceeds the other two by a user-
defined threshold value, this order is inferred as a so-
called ‘fixed order’. (In the subsequent step-wise build-
up and search of JoinMap, every order that is in conflict
with a ‘fixed order’ is taboo.) In these experiments, the
triplet threshold (logarithm of likelihood ratio) was set
to 7.0. Finally, both JoinMap and RECORD have the
option to perform a ‘ripple’ after adding a marker to the
map. With a ripple, local marker order changes are
systematically considered while improvements are
maintained. In these tests, neither program performs
ripples.

During this study, JoinMap 3.0 (Van Ooijen and
Voorrips 2001) became available. This version of Join-
Map is user-friendly because of the graphical user
interface. However, for our experiments the MSDOS
oriented JoinMap 2.0 was chosen because of its ability to
run batch jobs. The results from this study can be
extrapolated to JoinMap 3.0, since only minor changes
in the algorithm have been introduced (J.W. Van Ooijen,
personal communication).

Results

Experiment I

In this experiment, both JoinMap and RECORD were
tested with simulated data representing 50 marker loci
on a 50 cM linkage group. Irrespective of the size of the
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Fig. 2 Change of two different correlation coefficients, Spearman’s
rs and Kendall’s s, by inverting a window of markers consisting of a
proportion p of a long sequence (Eq. 2)

Table 2 Values of simulation
variables used in the three
different experiments

Variables Experiment I Experiment II Experiment III

Map length (cM) 50 10, 100 50
Number of loci 50 100 50, 100, 150, 200
Population size 25, 50, 100, 250 100 25, 50, 100, 250
Percentage scoring errors 0, 5, 10, 15, 20, 30 3 5
Percentage missing observations 0, 5, 10, 15, 20, 30 0 0
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mapping population (N=25, 50, 100, and 250), perfect
marker orders were obtained. This result demonstrates
that map construction using perfect data is not really a
test case. In addition, we tested two more algorithms, i.e.
ComBin (Buntjer et al. 2000a, b) and JMQAD (the
‘Quick-And-Dirty’ module within the JoinMap 2.0
package) to recognize again that perfect maps are surely
obtained with perfect data (results not shown). Appar-
ently, the real test case for the performance of mapping
algorithms is their sensitivity for ambiguities in the data
caused by missing observations and/or genotyping er-
rors. In realistic data, the proportion of missing obser-
vations and genotyping errors generally does not exceed
5%. However, to get a better view on the sensitivity of
the methods for noise, both programs were tested with
elevated levels of missing observations (5–30%) and
scoring errors (5–30%). The performance of each of the
programs, defined as the correlation coefficient between
the true marker order and the order inferred by the
software, was averaged over the 150 replications for
every situation, and is shown in Fig. 3. It is clear that the
accuracy of the marker order produced by the programs
decreases with the data quality, reflecting a decrease in
the ability of both programs to recover the correct order
when data quality gets poor.

Missing observations do not severely harm the
recovered marker order. Especially, in large mapping
populations, the number of observations across
descendants largely compensates the ambiguities caused
by missing observations. Moreover, the vast majority of

the missing observations do not induce ambiguities.
Only when missing observations occur near recombi-
nations, the placement of the markers with RECORD
will be less accurate. Under these circumstances, missing
observations complicate the separation of markers from
neighboring loci, and make a pair of co-segregating loci
of unspecified order. When more missing observations
are present, the chance increases that these occur near
recombinations. JoinMap, however, is more sensitive to
missing observations than RECORD. Since in JoinMap
not only recombination estimates between adjacent
markers, but all pair-wise recombination estimates be-
yond a certain LOD threshold are used in the target
function, and since a single missing observation slightly
affects many of these pair-wise estimates, the impact of
an increasing proportion of missing observations in
JoinMap is greater than in RECORD.

The consequences of scoring errors are much more
serious. An error may cause a separation of two co-
segregating markers into two different loci. In this
respect scoring errors have the same effect as recombi-
nation. While recombinations are generally confirmed
by other data points, errors occur on their own, and
seldom confirm each other.

In Fig. 4, an example data set is shown containing
two forms of genotyping errors. Marker4 contains an
error in individual 5. Individual 5 does not contain
any recombination events. Therefore this particular
error will not add to the cost function of RECORD,
when marker4 is tested on different positions. Placing
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Fig. 3 Performance in Kendall’s s of RECORD and JoinMap on data sets differing in population size and noise level. The population size
is indicated by: ‘e‘ for 25, ‘h’ for 50, ‘D’ for 100, and ‘·‘ for 250 individuals. The results are based on 150 replicate runs
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marker4 at the end of the linkage group will not im-
prove the order as it causes a higher increase of the cost
function in the other individuals. While RECORD is not
sensitive to this kind of errors, JoinMap and other
methods based on pair-wise distances consider this error
as a recombination and include it in the map distance
calculation.

A different situation occurs in individual 1, where the
error is close to a recombination event. Initially, RE-
CORD will invert markers 3 and 4. This change will
decrease the cost function in individual 1. However, this
will cause a higher increase in the total cost function due
to individuals 2 and 7. This situation remains insolvable
as it is not clear whether marker 3 or 4 contains the
error. The best order is determined based on the other
individuals in the data set. In conclusion, scoring errors
provide RECORD with ordering ambiguities only when
they occur near recombination events. On the other
hand, pair-wise distance estimates are always affected by
errors, independent of their position.

In general, larger populations have a beneficial effect
on the mapping result. As population size increases,
more recombination events between a pair of markers
can be observed, which adds to the resolution between
the markers. The positioning of the markers will be more
accurate, and the relative impact of missing observations
and scoring errors decreases.

T-tests (data not shown) demonstrate that RECORD
produces equally good or significantly better results than
JoinMap. The T-tests were more significant when using
Kendall’s s rather than Spearman’s rs. By exception, on
data sets containing 250 individuals with an exceptional
high error rate of 15 or 20%, JoinMap has a small
advantage over RECORD, although neither algorithm
produces accurate maps in this situation. The reason for
this small advantage for JoinMap is that at larger pop-
ulation sizes, errors have a smaller impact on the dis-
tance estimates.

Experiment II

In the second experiment, JoinMap and RECORD were
tested for their ability to determine the marker order at
higher densities. For this purpose, two data sets were
used. The first set was based on a 100-marker map of
100 cM length (‘normal’ density). The second one was
generated from a ‘saturated’ map where 100 markers
were spread over a distance of only 10 cM. From both
the maps, a BC1 population was simulated and a real-
istic amount of 3% errors was introduced. Calculated
orders from both programs were compared with the true
one and the results are shown by the scatter plot of
Fig. 5.

The dense map was more challenging to both pro-
grams. Although the mean number of errors remains the
same, the average number of true crossovers in the dense
map is reduced by a factor 10 as compared to the sparse
map. This causes the signal/noise ratio to decrease by a
factor 10. This explains why mapping in dense regions is
more error-sensitive than mapping in less dense regions.
The results of experiment II show that in more dense
regions RECORD performs better than JoinMap.

Experiment III

In the third experiment, RECORD and JoinMap were
compared for their speed. Calculation time was mea-
sured for a number of data sets varying in the number of
loci and population size on a computer with a Pentium
II MMX processor of 350 MHz. Population size does
not have a big effect on JoinMap. Therefore, the results
were averaged over tests at different offspring sizes with
the same number of loci. Figure 6 shows the increase in
calculation time for both programs. We fitted power
curves to these data, and as anticipated, computation
times for RECORD and JoinMap nicely fit curves of
powers 2 and 4, respectively. Thus, especially with data
sets of over 100 loci, the speed advantage of RECORD
over JoinMap is overwhelming.

Discussion

There are two major aspects to methods for efficient
ordering of gene loci on a linkage map. First, the target
function is important. In this paper, we propose the total
number of observable recombination events between
adjacent markers as the target function, with an adap-
tation for situations in which genotype information is
incomplete or missing. From a statistical point of view
the full likelihood function would be an attractive
alternative. The two criteria are equivalent in case the
data are perfect (no missing observations and complete
genotype information). In order to investigate the
behavior of COUNT and likelihood with realistic data
sets, we compared the two methods using simulated data
sets with incomplete information, i.e. an F2 of size 100

1 2 3 4 5 6 7 8 9

MARKER1 A A B B A A B B A

MARKER2 A A B B A A B B A

MARKER3 B A A B A B B B A

MARKER4 A B A B B B A B A

MARKER5 B B A A A B A B B

MARKER6 B B A A A B A B B

Fig. 4 Inspection of raw data (example) can expose two types of
errors. Segregating alleles are indicated by ‘A’ and ‘B’; individuals
are represented in columns 1–9; marker data are shown in rows 1–
6. The erroneous data point in marker 4 at individual 5 is a clear
singleton that does not cause an ordering ambiguity in RECORD.
The order of markers 3 and 4 is based on individuals 2 and 7, but is
doubted by individual 1. Individual 1 contains an error close to a
recombination event. In this case it is not clear whether markers 3
or 4 contains the error in individual 1
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with dominant markers and 5% missing observations.
The two target functions were calculated for a series of
near-optimal sequences (obtained by local inversion of
segments) as well as a series of random rearrangements
in the correct sequence.

Specifically for the first set of sequences (which cor-
responds to the part of the parameter space searched by
RECORD), the squared correlation between COUNT
and likelihood never dropped below 0.90. An example of
the results of these calculations, where the correlation is
one of the poorest we encountered, is shown in the
scatter diagram of Fig. 7. So, for practical purposes, our
heuristic COUNT criterion appears to be quite an
acceptable compromise between statistical rigour and
common sense.

Several other easy-to-calculate target functions have
been proposed in the past. Among these are sum of
adjacent map distances (SAD), sum of adjacent recom-
bination frequencies (SARF), and SALOD scores. For
perfect data all of these are equivalent, in the sense that
they have the same global optimum. However, with
incomplete data both SARF and SALOD are inferior to

COUNT. This is because SARF does not account for
variation in the precision of pair-wise estimates, whereas
SALOD may lead to erroneous results when the number
of informative individuals varies between pairs of loci.
Contrarily, the COUNT function comes close to the full
likelihood since it uses observable recombination events
(which are equivalent to likelihood), for that part of the
data which has complete information, and uses maxi-
mum likelihood estimates for the data that are incom-
plete.

The second aspect of map construction concerns the
search algorithm for the optimum. In the analogy of the
travelling salesman problem, several approaches have
been proposed. Among these are branch-and-bound
(Thompson 1987), seriation (Buetow and Chakravarti
1987), and simulated annealing (SA; Kirkpatrick et al.
1983), or combinations thereof. Although SA generally
produces optimal or near-optimal solutions, we did not
choose it for the following reason. Extensive experience
with linkage mapping has shown that most alternative
maps that are produced by different computer packages
and/or different program settings in JoinMap differ by
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Fig. 5 Performance of RECORD and JoinMap in dense maps. The calculated rank number of markers by both RECORD and JoinMap
is compared with the true rank number by Spearman’s rs. Data were obtained from experiment II
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inverted segments in the locus sequence. This is the re-
sult of ambiguities in real data and is in line with what
one would expect intuitively. So, rather than the SA-
search, which starts from a random sequence and sub-
sequently randomly exchanges two loci, or randomly
moves a single locus along the sequence, we decided to
search that part of the parameter space which most
likely represents biological reality, starting from an
‘educated first guess’ obtained by the branch-and-bound
method.

One may, of course, think of heuristic variations to
both SA and the RECORD search. For example, to first
construct a ‘skeleton map’ of not-too-closely linked
markers and, during the subsequent SA-search involving
all loci, consider any exchange of position involving two
skeleton markers as a taboo area of the parameter space
(J. Jansen, personal communication).

An additional aspect of linkage mapping, which until
recently has received little attention, concerns the
(un)certainty of the map produced by a particular
algorithm. We have added a feature to RECORD which
provides the user with the distribution of rank numbers
in a series of near-optimal solutions. Recently Jansen
et al. (2001) and Hackett et al. (2003) have described a
similar approach by recording the positions of loci in a
series of sub-optimal solutions encountered in the SA-
search.

In our comparison of the performance of RECORD
and JoinMap we did not account for the fact that RE-
CORD only produces orders, whereas JoinMap pro-
duces map positions in centimorgans. Therefore, the
comparison is not a completely ‘fair’ one. On the other
hand, correct locus ordering is of more importance than
having ‘exact’ map distances, especially when con-
structing high-density maps. In such high-density maps,
the resolution that can be attained is primarily dictated
by the size of the mapping population, usually not sur-
passing 1.0–0.25 cM. Estimated ‘exact’ map distances in
this order of magnitude do not make much sense, as
their standard error readily exceeds the estimate itself.

Subsequent reasons as to why we have put emphasis
on correct locus ordering and consider distance as rel-
atively insignificant, are based on the unequal distribu-
tion of both recombination events and AFLP markers
on the physical map. Highly localized hotspots or
coldspots for recombination may cause manifold dif-
ferences in map distance estimates between loci,
depending on the sex or genetic background of the
parental genotype. As a result, physical to genetic dis-
tances can vary from 25 kb/cM (Büschges et al. 1997) to
40 Mb/cM (Zhong et al. 1999). Futhermore, successful
application of mapping information in map-based
cloning or marker assisted selection with flanking
markers also depends more on a correct marker order
than accurate genetic distance estimates.

Apart from the observed difference in error-sensitiv-
ity between the programs, the results of experiment II
once more demonstrate the disastrous effect typing er-
rors will have on the ability to recover the correct locus
order, especially for regions of high marker density. This
confirms earlier notions by Buetow (1991) and Hackett
and Broadfoot (2003) on the graveness of scoring errors
on map construction. Figure 3 indicates that the penalty
for a typing error is roughly fivefold the penalty for a
missing observation; a similar conclusion was draw by
Hackett and Broadfoot (2003). For this reason we have
developed a procedure, ‘SMOOTH’, for the detection of
‘suspect’ data points in a mapping population (Hans
Van Os et al., manuscript in preparation). We have
successfully applied this procedure in constructing a
high-density linkage map for chromosome I in diploid
potato (Isidore et al. 2003).

At this moment the RECORD-approach is being
used for ultra-dense map construction in potato (Isidore
et al. 2003). In these situations, linkage groups may
contain more than 500 markers, numbers unthinkable in
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being analyzed simultaneously by conventional mapping
software, as it would take more than 9 days to calculate
the map. Contrarily, RECORD analyses data sets of 500
markers within 20 min.

When RECORD was being developed, there were no
alternative programs available that could handle these
amounts of data. A new algorithm that can speed up
map calculation based on pair-wise distances by using
the simulated annealing approach has been tested, but is
not yet available (Jansen et al. 2001; J.W. Van Ooijen,
personal communication).

RECORD is capable of handling data sets of
backcross populations, but to apply RECORD for the
construction of the high-density map of potato, which
is based on a population derived from non-inbred
parents, several modifications have to be made to the
raw data. First, the observations recorded in the off-
spring have to be split into the products of male and
female meiosis. From there on, the maps from both
parents have to be calculated separately. Within the
parental data sets, the linkage phase of each marker
has to be assessed. This can be done with the ‘Quick-
And-Dirty’ mapping module, which is included in the
JoinMap 2.0 software package. This program calcu-
lates the best marker order by minimizing the sum of
adjacent distances. Although this module does not
produce very accurate marker orders, it is accurate
enough for linkage phase ascertainment, which can be
done hand-based, on the neighboring markers. By
converting all markers that are in repulsion phase into
coupling phase, the data are comparable with two
separate BC1 populations for each parent, also re-
ferred to as the two-way pseudo-testcross (Grattapa-
glia and Sederoff 1994).

The version of RECORD used in this study only
produces orders of loci but no map positions in centi-
morgans. Currently we are preparing a version which
does have this feature as well as several sophistications,
like a choice of target functions, an extended search
algorithm for the more ambiguous data sets, a graphical
user interface, and a variety of output options.

In summary, conventional software has been suffi-
cient in calculating linkage maps of low density. For the
construction of high-density maps, there is a strong need
for faster and error-tolerant methods. The method de-
scribed in this paper exceeds the currently available
software both in speed and accuracy.
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